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Parametrization invariance and shape equations of elastic axisymmetric vesicles
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The issue of different parametrizations of the axisymmetric vesicle shape addressed by Hu Jian-
Guo and Ou-Yang Zhong-Can [Phys. Rev. E 47, 461 (1993)] is reassessed, especially as it transpires
through the corresponding Euler-Lagrange equations of the associated elastic energy functional. It is
argued that for regular, smooth contours of vesicles with spherical topology, different parametriza-
tions of the surface are equivalent, and that the corresponding Euler-Lagrange equations are in

essence the same.

If, however, one allows for discontinuous (higher) derivatives of the contour

line at the pole, the differently parametrized Euler-Lagrange equations cease to be equivalent and

describe different physical problems.

It nevertheless appears to be true that the elastic energy

corresponding to smooth contours remains a global minimum.

PACS number(s): 68.15.4-¢, 82.65.—1i, 46.30.—i

Recently Hu Jian-Guo and Ou-Yang Zhong-Can [1] ar-
gued to the effect that different parametrizations of the
axisymmetric shape of a lipid vesicle lead to different
equations governing its shape. Should this assertion be
regarded as generally valid, it leads to disturbing ambi-
guities in the results of the computation of equilibrium
shapes of the elastic vesicles. Also, many results derived
until now [2,3] and based on the assumption that the
parametrization of the surface does not alter its equilib-
rium form, would be cast in grave doubt. It is thus of
utmost importance to establish the precise limits of the
claims made in Ref. 1, particularly since it is quite clear
from the general theory of the variational calculus [4] that
these claims cannot be generally valid.

A criticism of the variational methods employed in [1]
has already been voiced by Jiilicher and Seifert [5], who
based their arguments on the incorrect way the boundary
terms were treated in the derivation of the variational
equations for general topologies. Limiting ourselves to
spherical topology we will, in what follows, investigate
the variational shape equations for different parametriza-
tions and their range of validity.

Though all our formal derivations and associated dis-
cussion will be centered on the bilayer-couple model, the
modifications brought to the formalism in the framework
of the spontaneous curvature model — the two are just
different limiting cases of the generalized bilayer-couple
model — are known [6] and do not in any respect modify
the conclusions reached below.

The formulation of the problem treated here is simple.
We start with the variational principle for an elastic vesi-
cle under the constraint of constant volume V', constant
surface area A, and constant difference between the ar-
eas of the two membrane surfaces in contact, AA. The
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equilibrium shape of the vesicle is obtained from the first
variation [3]

SL=68(Fo—iLA- 1MV —1INAA)=0, (1)

where the bending energy can be expanded in a series
with respect to the principal curvatures c¢; and cz of
which the first term is of the form

ﬂ:ifm+@fm. @)

In the above equation we omitted the Gaussian elastic
term, as we consider only vesicles of fixed (spherical)
topology. Furthermore, the elastic energy, area, volume,
and area difference are all normalized with respect to the
corresponding values for the spherical shape [3], while
L,M, and N are the Lagrange multipliers corresponding
to the constraints of fixed area, volume, and area differ-
ence. Furthermore, da is the normalized area element of
an axisymmetric vesicle, i.e., f da = 1.

We start by choosing the relevant variables describing
the shape of an axisymmetric vesicle. These are the angle
1(z) between the tangent to the contour and the z axis,
and the contour line itself, z(x). The z axis coincides
with the rotational axis and is perpendicular to the z
axis. The connection between the contour line and ¥ (x)
is

22 _ —tany(a), 3)

while the two principal curvatures of an axisymmetric
shape have the form

and cn,(x) = cosw(z)dlﬁtz(;l. (4)

The volume and the surface area difference can be ob-
tained in the form
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V=%f:n2cpda,
AA=%f(cp+cm) doa . (5)

We now analyze four different derivations of the vari-
ational shape equations, all stemming from Eq. (1), of
which three are based on axial radius, area, and con-
tour arclength parametrizations, while the last one is a
“general” shape equation [7], which for an axisymmetric

shape reduces to 21; parametrization. To the analysis of

[1] that contains the comparison of the first and the third
of these parametrizations and the “general” shape equa-
tion we thus add an additional derivation of the shape
equation, where the area itself is taken as a variational
parameter.

If we start by taking the axial radius = as the parameter
of the shape, we obtain the contour line z(z) from the

J

H(z) = cos 31/)(:1:)% — 3 siny(z) cos 24y () (d’l/)(w))
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minimization of the action functional £ which can be
cast into a dimensionless form

et fr (0 D) a

where

d‘d)(w) T sin ¢ dy 2
(z ¥ (=), ) = cos Y ( T +COS¢E)

1 [Lm + Mz?sinvy
cos Y

+No (Sm‘” + cos *”)]( |
7

The Euler-Lagrange equation corresponding to the z
parametrization can be obtained from Eq. (6) in the form

4 o8 *Y(z) (d¢($))

x dz

3

_g [2 siny(x)

One notes here that this equation is of the second order
with respect to the derivatives of 4(z). The contour line
follows after a solution of Eq. (8) is inserted into Eq. (3).

We now proceed with the surface area parametriza-
tion of the vesicle shape. We take the axisymmetric area
element in the form

_ 1.z dzx
da =3 cos(z)’ ©)
together with ¢y = %(a). In this parametrization the

Lagrangian is obtained as

=1 [La(ew@. %) o
with

. 2
Lo (2.0(0), 2) — (552 + 2¥) -1
—Mzsin

zdy siny
*N(aaﬁ z )

d
Ve (gﬁ - cosz,b) . (11)

The last term in the above equation is due to the con-
straint Eq. (9) in the form of a differential relation be-
tween the surface area element and the axial radius.

In the o parametrization we now obtain two Euler-
Lagrange equations, one for % field, which is of the second
order in the derivatives of v, and the other one for 7,
field, which is of the first order. Combining these two

~ (sin;/:(w))s_M_L@%(x) —N(%@)z] =0. (8)

equations in an analogous way as in Ref. [1] into a single
equivalent equation for the ¢ field of a higher (third)
order, we are led to

d’H(m)
dz

H(x) = const, (12)

which is now the Euler-Lagrange equation in the «
parametrization. The #(z) function is the same as has
been defined in Eq. (8).

Taking the arclength of the vesicle contour as a param-
eter, thus

dz
ds = cos P(x) (13)

and 3 = ¥(s), we obtain the Lagrangian in the form

c=if s(w¢(>d’“s)) s, (14)

o)

where

dy  siny)?
(ds T ) —le

dy sin1/)
ds T )

L. (=96,
—Mz?siny — Nm(
+7s (‘(il_i — cos 1/:) . (15)

The last term in the above equation again ensures that
the geometric constraint Eq. (13) is obeyed along the
whole of the contour.
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The Euler-Lagrange equations are once again two, one
for the 1) field and the other one for the v, field. Combin-
ing the two of them into a single higher order equation

for ¢ we derive
cm(x)) —0
cp(2)
(16)

dH(z) N H(z) (1 _
dz T
where again ¢, and c,, are the two principal curvatures
and the function #(z) has again been defined in Eq. (8).
The next alternative derivation of the Euler-Lagrange
equations for the shape of the vesicle proceeds by de-
scribing the variation of the contour line in terms of in-
finitesimal deformations of the shape in the direction of
the local normal to the unperturbed shape [7]. For an
axisymmetric shape this is equivalent to taking é as a

H(z)
cp()

= counst,

parameter describing the shape. This procedure leads to
yet a new Euler-Lagrange equation, which in the case of
an axisymmetric vesicle reduces to Eq. (7) of Ref. [1].
After some algebra we were able to write the correspond-
ing Euler-Lagrange equation in terms of #(z), which in
this case assumes the form

dH(x) + H(=z)

= = . 1
. =0 — *H(z)z = const 17

The same equation has been recently derived by a some-
what different procedure also by Zheng and Liu [8] in
their analysis of the axisymmetric shape equations.

We were thus able to show that for these four differ-
ent derivations of the Euler-Lagrange equations, Egs. (8),
(12), (16), and (17), giving the contour line of the axisym-
metric shape, invariably reduce to a general equation of
the form #(z)F (xz) = const, where the form of the func-
tion F'(z) and the value of the constant depend on the
type of derivation.

Let us now investigate how the solutions of the different
Euler-Lagrange equations differ among themselves. This
is most easily seen if we investigate the nature of the
contour line close to the pole, i.e., z — 0,s —» 0,aa —» 0
in different parametrizations. By expanding the different
Euler-Lagrange equations in the vicinity of the pole we
get the following limiting behavior. In the  parametriza-
tion the expansion of Eq. (8) leads to

cp(z) Za+bz?+ -, (18)

where the two constants are determined from the con-
stancy of volume (V'), surface area (A), and the surface
area difference (A A in the bilayer-couple model). In the
area parametrization the corresponding limiting behavior
following from Eq. (12) is

cp(z) Za+blz|+---, (19)

where the constant a is determined from the values of
V,A,AA, while b = const/3 where the constant is the
same as in Eq. (12). The arclength parametrization leads
to the following limiting law:

co(z) = atble| +---, (20)

with %b =const, where the constant is the same as in Eq.
(16).

Finally, for the Euler-Lagrange equation Eq. (17), cor-
responding to locally normal shape variations introduced
by Ou-Yang and Helfrich [7], one gets

cp(z) Zalnjz|+---, (21)

with a = const/2, where the constant is the same as in
Eq. (17). Interestingly enough, an equation of the form
Eq. (21) has been derived recently by Naito et al. [9] as a
general solution [not just a limiting form as is the case in
Eq. (21)] of their shape equation, which is just the Euler-
Lagrange equation in the Ou-Yang—Helfrich parametriza-
tion.

One can easily demonstrate that the lowest power 7 in
the expansion c,(z) = a + bz™ + - -+ compatible with at
least one of the four Euler-Lagrange equations is n = 0
(in the sense that z"=° = Inz), corresponding to the Ou-
Yang-Helfrich parametrization. On the other hand, if we
choose the constants in Egs. (12), (16), and (17) as zero,
all the c,’s reduce to the limiting form Eq. (18).

The contour line close to the poles is then obtained in
an approximate form as

dz(z)

dx
It is thus clear that only the form Eq. (18) keeps the
contour line and all its higher derivatives finite close to

the pole. The other limiting forms lead to discontinuities
in the third derivative of the form

32(z
% 2~ —2b sgn(zx) (23)

for the limiting laws Egs. (19) and (20), or of the form

= —tany(z) = — [zcp(x)] . (22)

d3z(z) a
73 - | sgn(x) (24)

IR

for the limiting case Eq. (21).

The existence of discontinuities in (higher) deriva-
tives of the contour z(z) is in general connected with
point source terms in the Lagrangian. Let us investi-
gate this connection in the case of the Ou-Yang—Helfrich
parametrization. An external force would in general in-
troduce a term of the form

F=Fp+ %/f(a:)z(w)dw (25)

into the energy of the vesicle, where f(z) is the linear
density of the force in the direction of the z axis and the
numeric coefficient has been chosen for later convenience
(if there were external momenta acting on the contour
we would in general have to include those contributions
too). As Eq. (24) refers to a discontinuity at the pole,
we presume that the force density has the form f(z) =
fod(z), where fo is a constant. Deriving now the Euler-
Lagrange equation for the ansatz Eq. (25) we can cast it
in the familiar form

H(z)z = fo. (26)
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The constant in Eq. (17) is thus nothing but the mag-
nitude of the point external force acting at both poles.
Instead of using the language of point sources in the
Lagrangian we could also invoke external constraints:
if the separation between the poles is kept constant,
Az = const, then fy is just the conjugate variable to
Az.

Either way the conclusion is that the nonanalyticities
of the Hu—Ou-Yang type in the derivatives of the contour
line at the poles of the form Eq. (24) exist only if there
are external forces acting on the poles, pulling (push-
ing) them apart (together). More complicated exter-
nal sources (constraints) are needed in the case of other
parametrizations.

Another conclusion pertinent to the above discussion
is that, no matter what the magnitude of f; might be,
the corresponding membrane bending energy will always
be larger than in the fo = 0 case. In Fig. 1 we present
the result of numerical computation of 5, [Eq. (2)] for
a range of f, values while keeping V and AA constant
(V =0.95 and AA = 1.0129). Obviously the fo = 0 case
represents a global minimum of this energy.

One is thus led to the following conclusion regarding
the different forms of the Euler-Lagrange equation, stem-
ming from the various parametrizations of the vesicle
shape. If one demands that the contour line be a smooth
function, without any discontinuities in its values or its
derivatives, then all the different Euler-Lagrange equa-
tions reduce to a single equation of the form H(z) = 0,
identical to the x parametrization result. This is con-
sistent with the parametrization invariance of the varia-
tional problem, but is at odds with the generality of the
claims made in Ref. [1]. On the other hand, if one allows
for discontinuities in the (higher) derivatives of the con-
tour line of the vesicle, then each Euler-Lagrange equa-
tion corresponding to different parametrizations gives dif-
ferent equilibrium shapes. However, these shapes corre-
spond to different physical problems. It appears that
only the parametrization where #(xz) = 0 describes a
completely unconstrained vesicle of spherical topology.
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FIG. 1. Membrane bending energy F; obtained from nu-
merical integration of Eq. (26) for different values of the force
fo. The normalized volume is V = 0.95 and the normalized
area difference is AA = 1.0129.

The other parameterizations describe the shape of a vesi-
cle under external forces and are not relevant to the prob-
lem of the shapes of an unconstrained vesicle, but might
provide additional insight into the shapes of constrained
vesicles.

The conclusion of this paper, contrary to the asses-
ments of [1], is that for “smooth” axisymmetric shapes
the way in which one derives the shape equations mat-
ters little. All the different parametrizations employed in
the literature are equally correct and their correspond-
ing variational equations are parametrization invariant
— a result of the general theory of variational calculus
of long standing [4]. Should one, however, want to in-
clude “pathological” shapes with various discontinuities
in the higher derivatives of the contour line, one should
first of all start with a more elaborate form of the curva-
ture energy including the external forces or geometrical
constraints that lead in each particular case to these dis-
continuities. For these cases no general form of the free
energy is, however, presently in sight and the discussion
of the variational equations for those cases should reflect
the explicit constraints for each particular case.
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